การใช้กากมะเขือเทศเป็นแหล่งโปรตีนในอาหารไก่เนื้อ

The Use of Tomato Pomace as a Protein Source in Broiler Diets แก้วตา แดงสี… สุชน ตั้งหวีวิพัฒน์ และบุญล้อม ชีวะขิสระกุล" Kaewta Dangsn $n^{\prime \prime}$. Suchon Tangtaweewipat ${ }^{2 \prime}$ and Boonlom Cheva-Isarakul ${ }^{2 /}$

บทคัดย่อ

กากมะเขื้อเทศที่ใช้ศึกษาครั้งนี้ำระกอบด้วยผิวเปลือกและเมล็ด ซึ่งเป็นผลพลอยได้จากโรงงานทำผลิต ภัณฑ์มะเขือเทศมีความชื้นสูงมาก (75%) หลังจากทำให้แห้งแล้วมีปริมาณโปรตีน 20.0% ไฐมัน 14.5% และเยื่อ ใย 336% ar dry basis การทดลจงใช้ไก่เนื้อสายพันุุ์ดาร์เบอร์เอเคอร์ 707 จำนวน 600 ตัว แบ่งออกเป็น 4 กลุ่ม กธุ่มละ 3 ช้ำ (50 ตัว/จ้ำ) ให้ได้รับอาหารที่มีกากมะเขีอเทศแห้งเป็นแหลงโปรตีนในอาหารระดับ 010,20 หรืคื 30% คงที่ตลอดช่วงอายุไก่ 27 สัปดาห์ โดยปรับไห้มีโปรตีน พลังงาน (ME) รวมทั้งไลซีนและเมทไธโคนีน เท่ากันทุกสูตร ผลปรากฏว่า การใช้ที่ระดับ 30% ทำให้สมรรถภาพการผลิต (น้ำหนักตัวพิม ปริมาณอาหารที่กิน และ FCR) ด้อยลงอยางมีนัยสำคัญ ($\mathrm{P}<0.05$) นอกจากนี้ยังพบว่า กลุ่มที่ใช้กากมะเขือเทศมีสัดส่นนของทางเดิน จาหารมากกว่า ในขณะที่เปอร์เซ็นต์ซากและเนื้อหน้าอกน้อยกว่ากลุ่มควบคุมอย่างมีนัยสำคัญ ส่วนตับ กิ้น ไขมัน ในช่องท้องและเนื้อน่องให้ผลไม่ต่างกัน โดยตับและกี๋นมีแนวใน้มเพิ่มจึ้น แต่ไขมันในช่องท้องกลับมีแนวใน้มลด ลงเมื่อใช้กากมะเขือเทศ โดยสรุป กากมะเขือเทศตากแห้งสามารถใช้เป็นแหล่งโปรตีนในอาหารไก่เนื้อได้ที่ระดับ $10-20 \%$ โดยไม่มีมลเสียร้ายแรงต่อสมรรถภาพการผลิต แต่ $F C R$ และต้นทุนการผลิตจะสูงึ้นเล็กน้อยเมื่อใช้ที่ ระดับ 20%
(คำสำคัญ กากมะเขีฉเทศ โปรตีนจากพีฮ จงค์ประกอบหางเคมี ไกเเนื้จ คุณภาพฮาก)

Abstract

Tomato pomace used in this experiment, consists of peel and seeds, is a residue from canary plants. It had high moisture content (75\%) After dry under the sun, its chemical composition on arr dry basis was 20.0% CP 145% EE and 336% CF A total of 600 heads of Arbor Acre broilers were allotted to 4 groups, each with 3 replicates (50 heads/rep) The dry tomato pomace was incorporated as a protein source into experimental diets at the levels of $0,10,20$ and 30% throughout the $2-7$ weeks of birds' age. All diets were isonitrogenous, isocaloric as well as isolysine and methionine The result revealed that body weight gain, feed intake and FCR significantly decreased when tomato pomace was incorporated at 30% of the diet. There was no significant difference among groups on the weight of liver gizzard, abdominal plus visceral fat and thigh meat. However total gastrointestinal tract was significantly increased while dressing percentage and breast meat was decreased when compared

[^0]
to the control group it is concluded that dry tomato pomace could be used at $10-20 \%$ of the diet without serious adverse effect on brollers performances But FCR and cost of production of the 20\% group were slightly higher than the control group.
(Key words Tomato pomace Plant protein, Chemical composition, Broller, Carcass quality)
Kaewta Dangsri babilone51@yahoo.com
คำนำ

ประเทศไทยมีโรงงานอุศสาหกรรมแปรรูปวัตถุดิบหางการเกษตรหลาษขนิด ทำให้มีวัสดุเศษเหลือจาก การผลิตที่ต้องกำจัดทิ้งจำนวนมาก ในการแปรรูปมะเขือเทศมีกากมะเขีอเทศ (tomato pomace) ซึ่งประกอบด้วย ผิวเปลือก เนื้อบางส่วน แกนกลางและเมล็ดเป็นเศษเหลือ กากมะเปือเทศจากโรงงานเหล่านี้มื้ำปนมากหรือน้อย ขึ้นกับเคื่องจักรที่ไช้ในการผลิต มะเขีอเทศมีปลูกกันมากในภาคตะวันออกเฉียงเหนือและภาคเหนือ ส่วนหนื่ง จำหน่ายเพื่อการบริกกคโดยตรง อีกส่วนส่งงข้าโรงงานแปรรูป ในปีเพาะปจูก $2540 / 2541$ จังหวัดดสียงใหม่และ ลำพูนมีพื้นที่เพาะปลูกมมะเเือเทศสำหัับสงโรงงาน 8,100 และ 650 ไร่ ได้ผลผลิคจำนวน 25774 และ 2,707 ตัน ตามลำดับ (เขตเศรษฐกิจการเกษตจที่ 13 , ติดต่อส่วนตัว) มะเชือเทคที่สงเข้าโรงงานจะมีเศษเหลือบระมาณ 9% (Hill and Dykstra, 1980 อ้างโดย ยุวดีนละคณะ, 2536) โภงงานจึงต้องกำจัดทั้งเพื่อมิให้เกิดบัญบหามลภาวะ จยางไรึก็ดี กากมะเชือเทศเห่่านี้มีความชื้นสูงมากประมาณ 75% เมื่อทำไห้แห้งโดยการตากแดดจะใช้เวลา $2-3$ วัน มีกกชนะดังนี้ ไปรตีน 1999%, ไขมัน 1450% เยื่อใย 3363%, เถ้า 4.82% และ NFE 19.33% arr dry basIs และมีค่า ME เท่ากับ $173 \mathrm{kcal} / \mathrm{g}$ (สุชนและคณะ 2544) จึงอาจนำไปไช้เปนนแหล่งโปรดีนในอาหารสัตวิปีกทด แทนกากถั่วเหลืองที่มี่งาคาแพงได้ แต่ากกมะเปือเทศมีเยื่คใยสูงรึ่งสวนนหนึ่งอยู่ใดููป pectin สัตว๊ไม่สามารกนำไป ใฮ่ได้ ต้องใช้ความร้อนที่ 100° ฐ เป็นเวลา 10 นาที จึงจะย่อยได้ อย่างไร็ดีดิิิีีนไม่สามารธทำให้ปริมาณ nemicellulose ลดลง (Reinders and Ther 1999) ปริมาณเยื่อใยที่สูงเกินไปขจงกากมะเขือททศ อาจเป็น จุปสรรคต่อการ์ช้เป็นอาหารส้ตปีปีกบ้างพอสมควร Filho et al. (1999) นำกากมะเดือเทศมาวิเคราะห์หา ปริมาณสารพิษ เป็ As Cd และ Hg พบว่า มีปริมาณต่ำสามารถนำมาใช้เปินอาหารัตว๋ได้ นอกจากนี้มะเปือ เทศยังมีรงควัตถุสีแดงและสีเหลือง คือ lycopene และ carotene โดยมี lycopene มากกว่าจีงทำให้มะเขือเทศมี สีแดง Sharma and Maguer (1996) วิเคราะห์หาปรูมาณ lycopene ในมะเทือเทณ พบว่า ส่วนผิวเปลือกกนละเนื้อ สวนที่ไม่ละลายน้ำซึ่งมีเยื่อใยมากมี Iycopene 42.3 มก/ก ในขโณะที่ส่วนละลายน้ำได้มีปริมาณ 4 มก/ก

Squres et al (1992) นำกากมะเขือเทคไปผ่านการแช่น้ำ แช่กรด และแช่ด่างหรีอผ่านความร้อนเพื่อ ทำลายสารพิษและเพิมการใช้บระโยชน์ได้ดองโกชนะ แล้วนำมาใช้เป็นวัตถุดิบเพื่อทดแทนโปปตีนของกากถั่วเหลือง ใน่ไก่เนื้อที่ระดับ 10 และ 20% ของสูตรจาหาร พบว่ากากมะเขือเทศที่ผ่านกระบวนการต่างๆ ไม่ช่วยเพิ่มระดับ การใใข้ให้สูงขึ้น แต่ไมไม่ก่ให้เกิดผลเสียต่อสมรรถภาพการนลิตของไก่เนื้อ Bellea et al. (1977) ใช้กากมะเขือเทศ ที่มีความซึ้น $10-11 \%$, โปรตีน 1966%, ไไมัน 8.45% และ NFE 2212% ในอาหารไก้เนื้อระดับ 2 และ 3% พบ ว่า ทำให้มีน้ำหนักและปริมาณอาหารที่กินต่ำกว่ากลุ่มควบคุมเล็กน้อย (177 และ 179 vs 1.80 กก 255 และ 2.58 vs 2.66 กก ตามลำดับ)

แต่เนื่องจากการใช้กากมะเขือเทศเป็นแหล่งโปรตีนในยาหารไก่เนื้อยังไม่มีรายงานในประเทศไทย ซึ่ง ลักษณะะรือคุณภาพของกากมะเขือเทศที่ผลิตได้นี้อาจแตกต่างจากต่างประเทศ จึงได้ทำการศึกษาขึ้นเพื่อให้ ทราบถึงระดับการใช้ที่เหมาะสมที่ไม่ก่อให้เกิดผลเสียต่อสมรรถภาพการผลิตและคุณภาพซากของไก่เนื้อ

อุปกรณ์และวิธีการทดลอง

ใช้ไก่เนื้อพันธุ์ $A A 707$ คละเพศ อายุ 1 วัน จำนวน 600 ตัว ในช่วงไก่อายุ 7 วันแรก เลี้ยงในกกเดียวกัน ให้ได้รับอาหารสำเร็จรุปชนิดเม็ด $(21 \% \mathrm{CP})$ ที่ผลิตจากบริษัทเหมือนกัน จากนั้นแบ่งไก่ออกโดยสุ่มเป็น 4 กลุม กลุ่มละ 3 ซ้ำ (50 ตัว/ซ้ำ) แต่ละซ้ำเลี้ยงในคอกปล่อยพื้นขนาด 67 ตารางเมตร ไก่ทุกตัวได้กินน้ำและอาหาร อย่างเต็มที่ อาหารทดลองเน็นแบบผงผสมเอง มีกากมะเขือเทศตากแห้งที่ระดับ $0,10,20$ และ 30% หรือเทียบ เท่ากับแทนที่กากถั่วเหลีองระดับ $0,10,21$ และ $31 \%, 0,11,23$ และ 34%, และ $0,13,26$ และ 40% ไนช่วงไก่ อายุ $2-3,4-6$ และ 7 สัปดาห์ ตามลำดับ อาหารทดลองแบ่งออกเป็น 3 ระยะ คือ ช่วงไก่อายุ $2-3,4-6$ และ 7 สัปดาห์ โดยในแต่ละระยะมี CP ระดับ 2119 และ 17% เท่ากันทุกกลุ่ม และมี ME เท่ากับ $3.0 \mathrm{kcal} / \mathrm{g}$ เหมือน กันทั้งหมด ส่วนผสมและคุณค่าทางโภชนาการของอาหารทดลองทั้ง 3 ระยะ แสดงไว้ในตารางที่ $1-3$ ส่วนองค์ ประกอบทางเคมีชองกากมะเขือเทศตากแห้ง แสดงไว้ท้ายตารางที่ 1

งานทดลองกระทำที่ฟาร์มสัตว๊ปีก ภาควิชาสัตวศาสตร์ คณะเกษตรศาสตร์ มหาวิทยาลัยเซียงใหม่ ใช้เคลาทดลอง / สัปดาห์ ช่วงระหว่างเดือนมิถุนายน -- สิงหาคม 2544 ข้อมูลด้านอัตราการเจริญเติบโต และการ ใช้อาหารบันทึกทุกครั้งที่เปลี่ยนแบ่ลงระดับโปรตีนในอาหารและเมื่อสิ้นสุดการทดลอง คุณภาพซาก (เปอร์เซ็นต์ซาก อวัยวะภายในรวมทั้งหมด ไขมันในช่องท้อง ตับ และกึ่น) และปริมาณเนื้อหน้าอกและเนี้อน่อง บันทึกเมื่อสิ้นสุด การทดลองด้วยการซ่าไก่แบบตัดเส้นเลือดดำที่คอ จำนวนเพศละตัวต่อซ้ำ (6 ตัว/กลุ่ม) ข้อมูลที่ได้นำไปวิเคราะห์ ค่าความแปรปรวนด้วยแผน Completely randomized design และหาลำดับความแตกต่างระหว่างกลุ่มโดยวีธี Duncan's new multiple rang test (Steel and Torrie, 1984)

ผลและวิจารณ์ผลการทดลอง

สมรรถภาพการผลิต

การใช้กากมะเขือเทศตากแห้งเป็นแหล่งโปรตีนทดแทนกากถั่วเหลืองในอาหารไก่เนื้อระดับ $0-30 \%$ ใน ช่วงไก่อายุ $2-7$ สัปดาห์ ผลปรากฏว่า สมรรถภาพการผลิต (อัตราการเจริญเติบโต ปริมาณอาหารที่กินและ $F C R$) ของกลุ่มที่ได้รับกากมะเขือเทศระดับสูงสุด (30%) ด้อยลงอย่างมีนัยสำคัญ $(\mathrm{P}<0.05)$ เมื่อเทียบกับกลุ่มควบคุมที่ ไม่มีการใช้กากมะเขือเทศและกลุ่มที่ใช้กากมะเขือเทศระดับ 10% (166 vs. 2.09-2.02 กก, 4.27 vs. 4.59-4 67 กก และ 2.58 vs. $220-2.33$ ตามลำดับ) ในชณะที่อัตราการตายให้ผลไม่ต่างกันไม่ว่าจะใช้หรือไม่ใช้กากมะเชือ เทศในอาหาร การใช้ที่ 20% ให้ผลไม่ต่างจากกจุ่มควบคุม ยกเว้น $F C R$ ด้อยลงเล็กน้อย

Table 1 Formulation and chemical composition of broler diets for 8-21 days ($2-3$ weeks) of age

Level of tomato pomace (TP) in diet (\%)	0	10	20	30
Level of TP substituted for SBM (\%)	0	10	21	31
Ingredients:				
Yellow corn	53.69	43.65	3361	23.57
Rice bran	10.00	10.00	10.00	1000
Soybean meal (44\% CP)	24.14	21.63	1911	16.60
Tomato pomace "	8.00	800	800	8000
Fish meal (57\% CP)	1.83	442	699	9.58
Rice bran oil	050	0.51	0.52	0.53
Dicalcium phosphate	102	0.99	0.96	0.93
Oyster shell	014	014	0.15	0.15
Met	007	0.06	0.05	000
Lys	025	0.25	025	0.25
Salt	0.35	0.35	035	0.35
Premix (BASF)	100.00	10000	100.00	100.00

Calculated chemical composition (\% arr dry basis):

CP	2100	21.00	2100	21.00
ME $(\mathrm{kcal} / \mathrm{g})$	300	3.00	300	3.00
CF	511	7.92	1073	13.54
EE	5.82	9.47	13.12	1678
Ca	100	1.00	1.00	100
P, available	045	0.45	0.45	0.45
Lys	1.10	110	110	110
Met	0.50	0.50	050	0.50
Met + Cys	077	077	0.76	076
Feed price $(B t / k g)^{2}$	7.86	783	779	777

[^1]การประฮุมหางวิชาการยองมหาวิหยาลัยนงษตรศาสตร์ ครั้งที่ 40

Table 2. Formulation and chemıcal composition of broiler diets for 22-42 days (4-6 weeks) of age

Level of tomato pomace (TP) in diet (\%)	0	10	20	30
Level of TP substituted for SBM (\%)	0	11	23	34
Ingredients.				
Yellow com	59.04	49.00	3895	28.91
Rice bran	10.00	10.00	1000	1000
Soybean meal (44\% CP)	2226	19.75	1724	14.73
Tomato pomace"		1000	20.00	30.00
Fish meal (57\% CP)	1.26	3.83	6.42	900
Rice bran oll	0.43	0.44	0.45	0.46
Dıcatcium phosphate	1.22	1.19	116	113
Oyster shell	007	008	000	000
Met	0.12	011	010	0.09
Lys	0.25	025	0.25	025
Salt	0.35	0.35	0.35	035
Premix (BASF)	100.00	100.00	100.00	100.00

Calculated chemical composition (\% air dry basis).

CP	1900	1900	19.00	19.00
ME $(\mathrm{kcal} / \mathrm{g})$	3.00	3.00	300	300
CF	5.09	790	1071	13.52
EE	5.20	8.86	1251	16.16
Ca	090	0.90	090	0.90
P, avaılable	035	0.35	035	035
Lys	1.00	100	1.00	1.00
Met	0.38	0.38	0.38	0.38
Met +Cys	0.64	0.64	063	063
Feed price $(B t / k g)^{2}$	7.31	7.28	7.25	722

[^2]

Table 3. Feed formulation and chemical composition of broiler diets for $43-49$ days (7 weeks) of age.

Level of tomato pomace (TP) in diet (\%)	0	10	20	30
Level of TP substituted for SBM (\%)	0	13	26	40
Ingredients:				
Yellow corn	65.13	55.09	45.06	35.03
Rice bran	10.00	10.00	10,00	10.00
Soybean meal (44\% CP)	18.99	16.47	13.97	11.45
Tomato pomace ${ }^{1 /}$	-	10.00	20.00	30.00
Fish meal (57\% CP)	3.00	3.00	3.00	3.00
Rice bran oil	0.41	3.00	5.57	8.15
Dicalcium phosphate	0.50	0.50	0.51	0.52
Oyster shell	1.20	1.17	1.14	1.11
Met	0.05	0.06	0.06	0.06
Lys	0.12	0.11	0.09	0.08
Salt	0.25	0.25	0.25	0.25
Premix (BASF)	0.35	0.35	0.35	0.35
Total	100.00	100.00	100.00	100.00
Calculated chemical composition (\% air dry basis):				
CP	17.00	17.00	17.00	17.00
ME (kcal/g)	3.00	3.00	3.00	3.00
CF	5.00	7.81	10.62	13.43
EE	4.39	8.05	11.70	15.35
Ca	0.80	0.80	0.80	0.80
P, available	0.30	0.30	0.30	0.30
Lys	0.85	0.85	0.85	0.85
Met	0.32	0.32	0.32	0.32
Met + Cys	0.56	0.56	0.55	0.55
Feed price (Bt/kg) ${ }^{2 /}$	6.85	6.82	6.79	6.75

Table 4. Production performance of broilers fed diets containing varying levels of tomato pomace during 2-7 weeks of age.

Level of tomato pomace (\%)		BW gain (kg)	Feed intake (kg)	FCR	Mortality (\%)
In diet	Substituted for SBM				
0	0	$2.09{ }^{\text {a }}$	$459{ }^{\text {a }}$	$2.20^{\text {c }}$	5.3
10	10-11 $13^{2 /}$	$202{ }^{\text {a }}$	$467^{\text {a }}$	$2.33{ }^{\text {bc }}$	2.0
20	212326	$186{ }^{\text {ab }}$	$449{ }^{\text {ab }}$	$2.42{ }^{\text {ab }}$	60
30	31-34-40	$166^{\text {b }}$	$4.27{ }^{\text {b }}$	$2.58{ }^{\text {a }}$	2.0
S E.M.		0.03	0.04	003	0.47

${ }^{\text {abc }}$ Values within column with no common superscripts are significantly different ($P<005$). In the first week BW gain and feed intake were 106 and 120 g ./bird respectively
${ }^{21}$ Level of the tomato pomace substituted for SBM (\%) during 2-3, 4-6and 7 weeks of birds' age.

การที่สมรรถภาพการผลิตของไก่กลุ่มที่ได้รับกากมะเขือเทศระดับ 30% ของสูตรอาหาร ด้อยสงอย่างมี นัยสำคัญเมื่อเทียบกับกลุ่มควบคุมและใช้กากมะเซือเทศ 10% นั้น อาจมีสาเหตุเนื่องจากไก่กินอาหารได้น้อย กว่า เพราะอาหารที่มีเยื่อใยสูงมีความฟ้าม ประกอบกับเยื่อใยอาจขัดขวางการย่อยได้ซองโภซนะอื่น จึงทำให้ไก่มี สมรรถภาพการผลิตต่ำกว่า สำหรับในกรณีที่กลุ่มได้รับกากมเขือเทศระดับ 20% มีแนวใน้มว่ามีสมรรแภาพการ ผลิต โดยเฉพาะอย่างยิ่ง $F C R$ เลวลงนั้น อาจเนื่องมาจากโภชนะสวนใหญในกากมะเขือเทศอยูในสวนขของเปลือก และเมล็ดซึ่งยยอยได้ยาก ดังนั้น แม้ว่าสัตว์จะได้รับโภชนะจากการคำนวณใกล้เคียงกับกลุ่มควบคุม ดังตารางที่ 5 แต่โภชนะที่ไก่นำไปใช้ประโยชน์ได้จริงอาจน้อยกวา อยางไรก็ดี ผลจากการทดลองนี้ที่พบว่า สามารถใช้กาก มะเขือเทศตากแห้งในอาหารไก่เนื้อได้ที่ระดับ 20% โดยไม่มีผลเเียอย่างมีนัยสำคัญต่อน้ำหนักตัวเพิ่มนั้น สอด คล้องกับรายงานของ Squires et al (1992) ที่นำกากมะเขือเทศไปผ่านการแช่น้ำ แช่กรด แช่ด่างหรือผ่านความ ร้อนเพื่อลดสารพิษ และเพิมการใใช้ประโยชน์ได้ของโภชนะบางชนิด พบว่า สามารถใช้ได้ที่ระดับ 20% โดยการนำ ไปผ่านขบวนการต่างๆ ข้างต้น ไม่ได้ช่วยให้เพิมการใช้กากมะเขือเทศให้สูงขึ้น แต่ก็ไม่ก่อให้เกิดผลเสียต่อสมรรถ ภาพการผลิตของไก่เนื้อ อย่างไรกัดี Ammerman et al. (1965) El-Alally (1974) และ Tomcynsku (1976) ต่างก็ รายงานว่ากากมะเขือเทศสามารถใช้เป็นแหล่งโปรตีนในอาหารไก่เนื้อและไก่ไข่ได้เพียง 5% เท่านั้น ซึ่งสอดคล้อง กับ Bellea et al (1977) ที่พบว่าการใช้กากมะเขือเทศที่มีโปรตีน 197% และไๆมัน 85% สามารถใช้ในอาหาร ไก่เนี้อระดับ $2-3 \%$ ได้โดยไมมีผลเสียต่อสมรรถภาพการผลิต การที่รายงานเหล่านี้พบว่าใช้ได้ในระดับต่ำ อาจ เนื่องจากการศึกษาดังกล่าว ไมมีการปรับสมดุลของกรดอะมิโนและ/หรือ $M E$ ไนสูตรอาหาร ตางจากการศึกษา ของ Squires et al (1992) และจากการศึกษาในครั้งนี้ที่มีการปรับสมดุลของโปรตีน ME และกรดอะมิโนที่จำ เป็นบางชนิด เช่น เมทไธโอนีน และไลชีน เป็นต้น ดังนั้นจึงสามารถใข้กากมะเขือเทศเป็นแหล่งโปรตีนในอาหารไก่ เนื้อได้ค่อนข้างสูง $(20 \%$ ของอาหาร) โดยทำให้ประสิทธิภาพการใช้อาหารเลวลงไปบ้าง ดังได้กล่าวมาแล้ว

Table 5. Daily feed intake and nutrient intake of 7 week-old broilers fed diets contanng varying levels of tomato pomace (TP) during 2-7 weeks of age.

Level of TP in diet (\%)	0	10	20	30
Level of TP substituted for SBM (\%) 1_{1}	0	$10-11-13$	$21-23-26$	$31-34-40$
Daily feed intake (g)	1092	1112	106.9	1018
Daily nutrient intake (g)				
CP	206	21.0	202	193
ME (kcal)	328	334	321	305
CF	5.5	8.8	114	137
Met	0.42	043	042	040
Lys	107	1.09	105	100

"Level of the tomato pomace substituted for SBM (\%) during 2-3 4-6 and 7 weeks of birds age.

คุณภาพซาก

ผลของเปอร์เซ็นต์ซากและอวัยวะภายใน แสดงไว้ในตารางที่ 6 ปรากฏวา สัดส่วนของตับ กิ้น เนื้อนอง และไขมันในช่องท้องรวมทั้งสวนที่ห่อนุ้มอวัยวะภายในให้ผลไม่แตกต่างก้น แต่ทางเดินอาหารมีสัดสวนเพิ่มขึ้น ในขณะที่เปอร์เซ็นต์ซากและเนื้อหน้าอกลดลงอย่างมีนัยสำคัญเมื่อมีใช้กากมะเขือเทศในอาหาร ทั้งนี้อาจเนื่อง จากกากมะเขือเทศมีปริมาณเยื่อใยสูงมาก ทำให้เยื่อใยในสูตรอาหารสูงขึ้นด้วย (ตารางที่ 1-3) ซึ่งแม้อาหารจะมี ความฟ่าม แต่ไก่ก็พยายามกินอาหารเพื่อให้ได้โภชนะตามที่ร่างกกายต้องการ ด้วยเหตุนี้อวัยวะภายในโดยเฉพาะ ระบบย่อยอาหาร รวมทั้งกึ๋นจึงขขยายขนาดใหญ่ขึ้น สอดคล้องกับการใช้กากทานตะวันที่มีเยื่อใยระดับสูง มีผลทำ ให้กึ้นึึ่งเป็นอวัยวะสำคัญสำหรับใช้บดมีสัดส่วนสูงขึ้น (Senkoylu et al, 2000) นอกจากนี้เยื่อใยในอาหาวยัง อาจไปขัดขวางการใช้ได้ของโกชนะ ทำให้ไก่มีการเจริญเติบโตต่ำกว่าดังได้กล่าวมาแล้ว อีกทั้งยังทำให้ปริมาณ เนื้อหน้าอกลดลง ซึ่งสอดคล้องกับสัดส่วนของไขมันในช่องท้องที่พบว่ามีแนวใน้มลดลงเมื่อใช้กากมะเขือเทศ แสดงให้เหีนว่าการใช้กากมะเขือเทศจะมีปริมาณโภชนะเหลือจากการใช้ประโยชน์เพื่อการเจริญเติบโตน้อยกว่า จึงมีส่วนที่ไปสะสมเป็นไขมันเก็บไว้ในช่องท้องลดลง เช่นเดียวกับ Rezamand et al (2000) และ Senkoylu et al (2000) ที่ต่างก็รายงานว่าไขมันที่สะสมในช่องท้อง มีแนวใน้มลดลงเมื่อใช้กากทานตะวันระดับสูง ส่านกรณี ตับจากการศึกษาในครั้งนี้ที่พบว่ามีแนวโน้มเพิมขึ้นนั้น ขัดแย้งกับ Senkoylu et al (2000) เมื่อใช้กากทานตะวัน ที่มีไขมันและเยื่อใยสูงแล้วมีผลทำให้สัดส่วนตับลดลงอย่างนัยสำคัญ

ต้นทุนการผลิตเนื้อไก่

ต้นทุนการผลิดเนื้อไกที่อายุ 7 สัปดาห์ เมื่อพิจารณาเฉพาะต้นทุนคาอาหารอย่างเดียร โดยกำหนดราคา วัตถุดิบตามราคาเฉลี่ยในท้องตลาด และกำหนดให้กากมะเชือเทศมีราคาเป็น $1 / 3$ ฐองกากถั่วเหลือง คือ กิโลกรัม ละ 3.00 บาท ผลปรากฏว่า อาหารผสมกากมะเชือเทศมีราคาถูกลง แต่เนื่องจาก $F C R$ ของกลุ่มที่ใช้กากมะเชือ เทศระดับ 10% มีค่าสูงกว่ากลุ่มควบคุมเล็กน้อย จึงสงงลให้ต้นทุนค่าอาหารต่อการผลิตเนื้อไก่ 1 กก ของกลุ่มที่

ได้ร้บกากมะเขื้อเทศ 10% มีต้นทุนค่าอาหารใกล้เคียงกับกลุ่มควบคุม (16.88 vs .16 .04 บาท/กก) ส่วนกลุ่มที่ ใซ้กากมะเขีอเทศระดับ $20-30 \%$ มีต้นทุนสูงกว่ากสุ่มควบคุมมาก ($1.46-2.55$ บาท/กก, ตารางที่ 7)

Table 6. Dressing percentage, the relative weight of visceral organs, breast and thigh meat of 7 week-old broilers fed with tomato pomace (TP) diets during 2-7 weeks of age.

TP in diet (\%)	Dressing percentage	Visceral organs (\% BW)				Breast meat Thigh meat\qquad	
		Gl tract ${ }^{11}$	Liver	Gizzard	Fat ${ }^{2}$		
0	$82.0{ }^{\text {a }}$	$10.6{ }^{\text {c }}$	2.16	1.54	2.40	$14.5{ }^{\text {a }}$	9.9
10	$79.2{ }^{\text {ab }}$	$13.8{ }^{\text {b }}$	2.55	1.77	2.23	$11.9{ }^{\text {b }}$	10.2
20	$77.8{ }^{\text {bu }}$	$14.7{ }^{\text {D }}$	2.72	1.71	1.31	$12.4{ }^{\text {b }}$	10.0
30	$75.7^{\text {c }}$	$17.2{ }^{\text { }}$	2.43	1.94	1.56	$12.8{ }^{\text {b }}$	9.6
Male	78.6 ± 2.7	14.3 ± 3.0	2.44 ± 0.4	1.82 ± 0.4	1.86 ± 0.7	12.2 ± 1.6	$10.2+0.7$
Female	78.8 ± 3.8	13.9 ± 2.5	2.50 ± 0.4	1.66 ± 0.2	2.18 ± 0.6	13.5 ± 1.4	9.6 ± 0.6
S.E.M.	0.48	0.28	0.07	0.06	0.13	0.28	0.14

${ }^{\text {The }}$ Vaiues within column with no common superscripts are significantly different ($P<0.05$).
" gastrointestınal tract plus visceral organs. ${ }^{2 /}$ abdominal plus visceral fat.

Table 7. Cost of broiler production fed with tomato pomace diets during 2-7 weeks of age.

Group no.	Level of tomato pomace (\%)		BW gain (kg)	FCR	Production cost ${ }^{1 /}$	
	In diet	Subst. for SBM			(Bt/bird)	($\mathrm{Bt} / \mathrm{kg} \mathrm{BW}$)
1	0	0	2.09	2.20	33.45	16.04
3	10	10-11-13 ${ }^{2 /}$	2.02	2.33	33.99	16.88
4	20	21-23-26	1.86	2.42	32.53	17.50
5	30	31-34-40	1.66	2.58	30.86	18.59

สรุป

 กากมะเขือเทศซึ่งประกอบด้วยส่วนของเปลือกและเมล์ดเบ็นส่วนใหญ่ เมื่อนำมาตากแห้งมีโปรตีน ไขมัน และเยื่อใย เท่ากับ $20.0,14.5$ และ 33.6% ตามลำดับ และมีค่า ME $1.73 \mathrm{kcal} / \mathrm{g}$ แม้ว่ากากมะเขือเทศจะมี โปรตีนและไซมันสูง แต่เนื่องจากมีเยื่อใยสูง และโภชนะสวนใหญ่อาจอยู่ในเมล็ดซึ่งย่อยได้ยาก จึงทำให้กาก มะเขือเทศสามารถใช้ในสูตรอาหารไก่เนื้อได้เพียง 10% ตลอดอายุไก่ 2-7 สัปดาห์ หรีอเทียบเท่ากับแทนที่กากถั่ว เหลือง $10-13 \%$ โดยมีต้นทุนการผลิตด่ำกว่ากลุ่มควบคุมเล็กน้อย แต่ถ้าใช้ที่ระดับ 20% หรือเทียบเท่ากับแทนที่ กากถั่วเหลืองระดับ $21-26 \%$ จะมี $F C R$ และต้นทุนการผลิตสูงกว่ากลุ่มควบคุมมากพอควร แต่อัตราการเจริญ เติบโตไม่แตกต่างกันอย่างมีนัยถำคัญ สำหรับที่ระดัน 30% นั้น ไม่แนะนำให่ใช้ เพราะทำให้สมรรถภาพการผลิต ลดลงมาก
เอกสารอ้างอิง

เขตเศรษฐกิจการเกษตรที่ 13.2542 . สถิติการเกษตรภาคเหนือปีเพาะปลูก $2541 / 2542$. ติดต่อสวนตัว. ยุวดี นาคะผดุงรัตน์, พรพรรณเเลิศทวีสินธุ์ และ เครือวัลย์ เคลื่อนสูงเนิน. 2536 . การนลิตกรดอินทรีย์จากกากมะเขือเทศ. ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรริโรฒ ประสานมิดร, กรุงเทพฯ.
สุชน ตั้งทวีวิพัฒน์, บุญล้อม ชีวะอิสระกุล และแก้วตา แดงสี. 2544. การ่ใช้กากมะเดือเทคเป็นแหล่งโปรตีนและสารสีไน จาหารสัตว์ปีก. รายงานวิจัยบระจำปี 2544, เสนอต่อสถาบันวิจัยและพพฒนาวิทยาศาสตว์และเทคโนโลยี มหาวิทยาลัยเซียงใหม., เชียงใหม่.

Ammerman, C.B., R.H. Harms, R.A. Dennison, L.R. Arrington and P.E. Loggins. 1965. Dried tomato plup, its preparation and nutritive value for livestock and poultry, Florida Agricultural Experiment Station Bulletin, No. 691, pp 1-19.

Bellea, S. D. Murarasu and V. Balan. 1977. Utilization of tomato residues from canning factories. Lucrarile Stiintifice ale Tnstitutului de Cercetari pentru Nutritie Animala, 7:167-187.

El-Alally, H.A. 1974. Feeds for poultry from food processing wastage. Ph.D. thesis, Ain Shams University, Cairo, Egypt.

Filho S., J.C. Da., M.J.A. Armelin and A.O. Silva. 1999. Determination of the mineral composition in agroindustrial by-products used in animal nutrition, by neutron activation analysis. Pesquisa Brasileira, 3:235-241.
Reinders, G and H.P. Thier. 1999. Non-starch polysaccharides of tomatos. II. Influence of thermal processing. European Food Research and Technology, 209:47-51.
Rezamand, P., V. Homayoni, M. Shivazad, and S.A. Mirhadi. 2000. Investigation on various levels of high and low fiber sunflower seed meal and enzymatic treatment in broiler nutrition. In . XXI World's Poultry Congress, Montreal, Canada.

Senkoylu, N., N. Dale, G. Pesti, and R. Bakalli. 2000. The nutritional evaluation of high-oil sunflower meal. In : XXI World's Poultry Congress, Montreal, Canada.

Sharma. S.K and M. L. Maguer. 1996. Lycopene in tomato and tomato pulp fractions. Italian J. of Food Sci., 8:107-113.

Squires, M.W., E.C. Naber and V.D. Toelle. 1992. The effects of heat, water, acid and alkali treatment of tomato cannery wastes on growth, metabolizable energy value and nitrogen utilization of broiler chucks. Poultry Sci., 71:522-529

Steel, R.G.D. and J.H. Torrie. 1984. Principles and Procedures of Statistics, $2^{\text {nd }}$ ed., McGraw-Hil! Book Co. Inc. New York.

Tomczynski, R. 1976. Seeds and skıns of tomatoes in feeds for broilers. Zeszyty Naukowe Akademii Rolniczo-Technicznej w Olsztynie, No. 161:117-170. (Cited from Nutr, Abstr, Rev., 1978, Vol. 48, Artucle 2405:290).

[^0]: "นักศึกษาปริญญาโท (M Sc Student)
 ${ }^{2}$ тองศาสตราจารย์ (Associate Professors)
 ภาควิชาสัตวศาสตร์ คณนเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่ 50200 โทงศัพท์ 053-944070 ต่อ 117
 Department of Anımal Science Faculty of Agricuiture Chang Mai University 50200 Thailand, Tel 053-944070 ext 117
 ขคขอบคุณสถาบันวิจัยและพัฒนาวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเซียงใหม่ ที่สนับสนุนทุนวิจัย

[^1]: ${ }^{1 i}$ Tomato pomace meal contaned $19.99 \% \mathrm{CP}, 14.50 \% \mathrm{EE}, 3363 \% \mathrm{CF}$ and i $73 \mathrm{kcal} \mathrm{ME} / \mathrm{g}$.
 " Price of each ingredients (Bt/kg) Corn 5.60, Rice bran 4.10, SBM 9.10, FM 16.50. Rice bran on 18.00, DCP 12.00 , Oyster shell 2.00, Met 16000 , Lys 75.00 , Salt 300 , Vitamin-mineral premux 6500 and Tomato pomace meal 3.00.

[^2]: " 2 See Table 1.

